
LLNL-TR-404638

"Mtrack 1.0": A multi-vehicle,
deterministic tracking algorithm

C. J. Carrano

June 12, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

“Mtrack 1.0”: A multi-vehicle, deterministic tracking algorithm
Carmen J. Carrano
January 22, 2008

Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550

Abstract

As overhead persistent surveillance sensors become more capable at acquiring wide-field
image sequences for longer time-spans, the need to exploit such data becomes ever
greater. A desirable use of such sensors is to be able to track all the observable vehicles
while they persist in the imagery. Typically, this imagery is characterized by lower
resolutions (e.g. >= 0.5 m/pixel) and lower frame rates (e.g. ~ few Hz). We describe our
initial implementation of a multiple-vehicle tracking algorithm for overhead persistent
surveillance imagery. Subsequent reports will then present results of applying this
tracker to specific persistent surveillance imagery as well as algorithm improvements and
extensions for dealing with wider-field imagery.

1.0 Introduction

Tracking multiple vehicles in persistent surveillance image sequences is a very difficult
problem in general for a number of reasons relating either to the scenery or the sensor:

• Vehicles are small (e.g. several to tens of pixels), or low contrast
• Many vehicles, some of which may be close together, with variable speeds

and paths including stops.
• Obscurations of the path by buildings, overpasses, trees, terrain, or other

vehicles.
• Other scene clutter that may appear to be moving such as parked cars, sun

glinting, tall building edges, etc.

• Low frame rates
• Low resolution
• Grayscale information only
• Image stability issues

The initial deterministic approach we take here is based in part on our earlier single-
vehicle deterministic tracking algorithm [1], but a number of modifications are needed to
handle multiple vehicles. Our initial method relies on the mover map, path dynamics,
and image features to perform tracking. It does very well when the vehicles stay
separated and the obscurations are small enough such that the vehicles keep a constant
speed and direction under the obscuration. We attempt to track vehicles that come to a
stop such as at a stop sign or stop light, but have mixed results for such cases depending
on the appearance and dynamics of target. It is arguable whether we should allow for
stopping at the first stage of the tracker, but instead just generate reliable mover track
segments that can be linked together in a later stage of tracking.

2.0 Pre-Processing

The basic processing steps that the raw camera data must go through before tracking is
even possible are as follows given in Figure 1. Note that the blocks one and two could be
swapped, but for the testing done thus far, the ordering was as in Figure 1.

Figure 1: Basic processing steps prior to tracking

2.1 Geo-rectification

If streamed GPS and inertial navigation system data is available with the image sequence,
it is possible to geo-rectify and resample the data to a NADIR looking view at a specific
ground sampling interval. This has the advantage that it is much more straightforward to
translate pixel positions in the image to latitude and longitude so that we get can get
actual locations and paths of the vehicles for integration with geographical information
systems. Describing the algorithm for doing this is beyond the scope of this report but
can be found in [2].

2.2 Stabilization

As with most real-life navigations systems, the navigation data used in performing the
geo-rectification is subject to errors. Likewise, the cameras won’t necessarily be perfectly
calibrated in position. As a result, the geo-rectified image sequence will not be suitably
stabilized for best mover detection. If we can stabilize the image down to single pixel
accuracy we will have optimal conditions for the mover detection step. Typically, for
airborne imagery an affine-based stabilization works very well but a dense
correspondence approach can also be used, especially if there is significant terrain relief
or tall buildings. The stabilization algorithm we commonly use is described in [3] but
can be found in common textbooks on the subject [4].

2.3 Mover segmentation

The mover segmentation is a very important step because the detected motion regions are
used directly to guide the tracker. The purpose here is to generate a binary image for
each intensity image in the sequence where a 1 indicates a motion region and a zero does
not. After originally experimenting with a 3-frame-differencing approach [1], we are
currently experimenting with a median-filter based approach which does a better job at
filling in gaps in the larger vehicles, except at the slower velocities. It is a non-recursive,
highly adaptive technique that uses a sliding time window. The user can pick the frame
buffer size. With the lower frame frames, buffer sizes of 5 to 7 frames work well.

Geo-rectification
(if have GPS/

INS data)
Finer stabilization

Mover
segmentation

Raw
data To tracker

Although increasing the buffer size helps with slower movers, we have to be careful with
larger images because we need to be careful about the memory usage as the frame buffer
increases. If the image sizes become too big, it would be possible to split up the data as
needed and apply mover segmentation on smaller regions.

The algorithm is conceptually quite simple. A block diagram of the algorithm is
shown in Figure 2. An estimate of the stationary background at frame N is estimated by
computing the temporal median at each pixel location over some number of frames, B.
The absolute value of the subtraction of the background estimate from the current
(foreground) frame N yields an absolute difference image where brighter regions have a
greater probability of being in motion and darker regions are less likely to be in motion.
At this point, a threshold based on the statistics of the difference image is applied.
Typically 5*sigma to 8*sigma is good for selecting the motion regions. We have built in
the ability to let the threshold vary spatially, so instead of calculating and using the sigma
of the whole image at once to determine a single threshold, we can calculate it locally
with some given region size. This would be useful for images whose mean intensity has
some large scale variations. After the threshold step, we have always found it useful to
reject all regions less than or greater than a certain pixel count. The pixel counts depend
on the resolution of the imagery. Sometimes we also find it useful to apply a
morphological closing operation with a small square or circular mask to clean up the
blobs. Example imagery at each major step of the procedure is shown in Figure 3.

Figure 2: Block diagram of median-filter based motion segmentation.

3a: Foreground current frame N 3b: 7-frame temporal median

Temporal
Median

at each pixel
location

Frame N - B/2

Frame N + B/2

Frame N - B/2 + 1

Frame N

Frame N + B/2 - 1

…

…

Frame N :
Foreground

Absolute
difference:
|F.G. – B.G.|

Back-
ground

Binary
Threshold

(T * sigma_diff)

Morphological
Operations
(Blob size,

shape filters)

Mover
map

3c: Absolute difference 3d: Thresholded/etc.

Figure 3: Example imagery at each step of median-filter based mover segmentation.

Depending on how well the stabilization was done and the scenery content, what
we see in the mover map may be exactly what we wanted (moving vehicles) or it may
contain a number of clutter sources. These clutter sources come from buildings,
especially tall buildings, terrain altitude variations, other moving objects (e.g. trees in the
wind), and sun glints off water or parked cars. If the camera platform was stationary
most of this clutter would not exist, except that caused by the wind, but if the camera
platform is airborne and rotating about a particular location, for instance, then it will be
an issue. There are various ways to deal with the clutter sources. Sometimes these can
be cleaned up with the region size filter, but often these clutter sources will make it
through the region size filters. A straightforward way to deal with movers not associated
with vehicles on roads is to mask out regions where vehicles can’t go. This mask can be
either manually or automatically generated from the image itself or knowledge of the
road network

3.0 Tracking algorithm

We now describe the current implementation of the multi-vehicle tracker.

3.1 Track file format

In order for the tracking to work, we need to be able to keep a record of each vehicle
being tracked as well as some information about that vehicle. Currently, we keep track of
the following information:

• Frame #
• Track ID
• Center position of region (x, y in pixels)
• Bounding box (x0, y0, xsize, ysize)
• x and y velocity (pixels/frame)
• track length in # of frames
• number of frames missed
• track status (0 for just initialized, 1 for moving, -1 for static, -2 for missed)

As the tracking algorithm matures it is possible that we could add additional information
or use a separate working track file to store more key features of the tracks or the vehicles
themselves (e.g. intensity or color histograms, certainty of the position/velocity estimates,
…) We currently don’t store lots of information about vehicle appearance because we
have its position information and can extract out a template of the vehicle as the tracker
proceeds.

This track-file format is useful for research purposes only, and is not intended to
be used in a final product. A final track-file format should be one that will integrate into
further exploitation tools and will necessarily include latitude and longitude and
date/time-stamps.

3.2 Track initialization

Before vehicles can be tracked, they must be found in the first place. Ideally, we would
like to have a perfect vehicle detector to initialize all the potential tracks, though many of
the detected vehicles would be stationary and of little interest for tracking. Our track
initialization approach is simple; on the first frame of interest, all validly detected motion
regions are considered to be candidate movers and are initialized with a position and a
bounding box. For example, the nine regions detected in Figure 3d are be initialized as
shown in Figure 4. We can see here the importance of getting the mover segmentation
right and potential tradeoffs with the threshold and morphological operations. We see
here that the big truck on the left is separated into two regions and the big truck on the
top-right is separated into three regions. If those trucks were traveling faster, there would
be no gaps. If we allow a larger radius in the morphological operation, we can close
those gaps, but this comes at the expense of not being able to distinguish two or more
vehicles when they are close together because their regions would be merged. Future
work may include adding in the extra step of trying to connect motion regions that appear
to be from the same vehicle by analyzing object edge or boundary maps.

Because parked vehicles can start moving at any time or they can move in from
the edge of the imagery, with each new frame it is necessary to check if there are new
movers to initialize. As the track association proceeds, all movers that have been
accounted for are zeroed out in the mover map and any remaining movers are then
initialized as new movers.

Figure 4: Newly initialized tracks shown with initial bounding boxes and track ID’s

3.3 Track association for just initialized tracks

Once new tracks are initialized, we only have a single frame of observation, which means
we don’t know the speed or direction of the vehicle yet. To accommodate this, we allow
for a larger search space than usual and only use target features for association. The two
features we currently use are the peak of the cross-correlation and an average intensity
difference between the current vehicle and the candidate vehicle in the next frame. The
candidate target with the highest cross-correlation peak whose intensity difference is low
enough gets the match. The matching vehicle then gets a track status of 1, a track length
of 1, and a velocity assigned to it.

Future work may include trying to detect the orientation of the vehicle as well as
the road direction itself thus giving a better idea of where the vehicle could be headed,
but the current algorithm does not do that. Improved performance may also include using
a normalized and even perhaps a more direction sensitive correlation metric as well as
other target features such as intensity (or color) histograms.

3.4 Track association once moving

Now that we have the initial velocity estimate for each track, we can predict the next
position. The tracker loops through each vehicle in motion and tries to find the next
location of the vehicle. Using the mover map, it only searches motion regions that fall
inside its allowable search area. The maximum radius of the search area is defined at the
start of the algorithm based on realistic maximum velocity changes we would expect. A
diagram of this is shown in Figure 5.

Figure 5: Diagram of the track association search area.

Currently four metrics are then computed for each candidate location and the candidate
location with the “best” combination of metrics is selected. If the vehicle track has been
established for a few frames and the vehicle is moving slow enough, we also check for
the static case where the vehicle may have stopped. The same metrics from the single
vehicle tracker are being used [1]. The following metrics are used:

• Peak of the cross correlation between template and candidate, which have each
been demeaned and Hanning windowed. This helps us match the shape.

• Average intensity difference (or hue difference for color). This helps to prevent
switching from a bright to a dark vehicle or visa-versa.

• Path coherence – a measure of agreement between the object trajectory and real
life constraints. A low value is best.

o Positive
o Normalized
o Reflects local absolute angular deviations
o Responds equally to positive and negative velocity changes
o Weights w1 and w2 allow emphasis of angular or velocity deviations.

Currently we have w1=w2=0.5

• Speed difference (i.e. acceleration) - path coherence was not quite enough
information so looking at the simple speed difference is helpful. A low value is
best.

The candidate target with a combination of good enough metrics gets the match. Ideally,
the chosen target has the highest correlation peak, lowest intensity difference, best path
coherence, and lowest speed difference, but often times that is not the case. If the
dynamics have high scores, we can allow for less correlation and visa-versa. If no match
can be found, we allow the vehicle to go missing (with a status = -2) and assign the

Position(t-1) Position(t)
Predicted Position(t+1) =
Position(t) + velocity*dt

Candidate locations based
on detected motion regions

Search area
with radius, r

sk sk+1

θ
P(k)

P(k+1
)

)21()cos1()}1(),(),1({
1

1
21

+

+

+
−+−=+−Φ

kk

kk

ss
ss

wwkPkPkP θ

P(k-1)

predicted position to it. If we don’t detect the same vehicle within a specific number of
frames, the track is terminated. The metrics chosen here are by no means optimal and
better metrics are being considered.

We allow the bounding box to slowly change as the region size or shape changes.
This is useful when the vehicle speeds up to reveal its true size or when a longer vehicle
turns a corner. But it can cause confusion when a vehicle slows down causing the motion
region to either shrink (on small vehicles) or break up (larger vehicles). The ideal thing
to do would be to keep the vehicle area constant once we are sure of its footprint and not
let it shrink.

3.4.1 Multi-target specific considerations

Tracking multiple or in fact every detected vehicle in an image sequence can be much
more complicated than tracking only one vehicle, especially when the traffic density
increases and the road network is complex. We can break down the situations into
several cases.

• Best case: The vehicle matches exactly one moving region in the next frame.
We update the track file with this new location and velocity and add one to the
track length and keep or set track status to 1 (moving).

• Two or more vehicles match the same region. How best to handle this is currently
under investigation. The current code is set to only allow one match per region
because it zeros out matched regions in the mover map after they are matched the
first time, which means that another future vehicle in the track association loop
wouldn’t even check that mover region because it no longer exists. An example
of this is given in Figure 6a and 6b and 6c. We have experimented with allowing
multiple matches to the same region by not zeroing out the mover map and
allowing vehicles to be merged for a maximum number of frames before merging
the two track IDs, but this approach needs more work.

• Mover region starts breaking up. This can happen when two or more close
together vehicles begin to separate. In this case the best match to the larger region
is chosen to keep the same track ID. The region that didn’t get matched will then
become a newly initialized region with a new track ID. An example of this is
shown in Figure 6c and 6d with track ID 332 breaking up into track ID 332 and
ID 431. Another reason this can occur is when a vehicle (this is more common
for larger vehicles) slows down and the motion region starts to break up. Often,
the front and back of a large vehicle will have separate motion regions when
traveling slowly and the degree to which this occurs is dependent on the mover
detection and segmentation algorithm, the GSD, how many frames are used, and
the frame-rate. The same method for handling this scenario is used, but ideally
we would want to improve how we handle this situation. Options include adding
in some additional image processing to detect the vehicle size and shape at the
first detection, or we could get it from when the vehicle is moving faster. In
either case, once we know the estimated true size we want conserve the vehicle
area and not let it break up.

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 6: Example of two vehicles merging together (ID341 and ID332), with the rule
that vehicles can’t merge. The position ID341 is predicted and still shown in Figure 6b,
but is lost several frames later in Figure 6c since the cars (ID 332) are still in close
proximity. The now separated vehicle gets a new ID of 431 in Figure 6d.

3.5 Track filters

After the tracking for the sequence is completed and a track-file generated, we find it
useful to remove certain tracks that will probably be of little interest. The filters currently
implemented are the following.

• Track length filter. User specifies the minimum length of the track in number of
frames. All tracks less than that length are eliminated.

• Missing track filter. This is useful to do to the track file prior to creating a movie.
It removes all entries from the track-file with a missing status (= -2).

• Salient track filter. The purpose of this filter is to remove any tracks that don’t
seem to be really doing anything. It looks at the track status column and it too
many of them are stationary status (= -1), it removes them.

Note that these filters are completely optional. We mostly use the track length filter.

4.0 Performance

Generally, the performance of the mtrack algorithm is best when the vehicles have high
contrast with respect to the road and are well separated from each other with minimal
clutter or obscurations. We have had success with tracking through obscurations, either
trees or buildings, primarily in situations when the vehicle keeps a constant velocity
under the obscuration and does not stop or turn beneath it.
The detailed performance results of the current multi-tracker algorithm will be discussed
in a follow-on report.

5.0 Conclusions

We have developed and implemented an initial version of a multi-vehicle tracking
algorithm in IDL for tracking vehicles in persistent surveillance imagery. Future reports
will include extensions for scaling the algorithms up to handle much wider field data as
well as various improvements to the tracking algorithm.

References

1. C. Carrano, “Eztrack: A single vehicle deterministic tracking algorithm”, June 2007,
UCRL-TR-400667

2. M. Kartz, L. Flath, R. Frank, “Real-Time GPS/INS Correlated Geo-Registration and
Image Stabilization of Streaming High-Resolution Imagery Utilizing Commercial
Graphics Processors “,UCRL-ABS-204226

3. M. Duchaineau, “Progressive Dense Correspondence with Applications to Video
Analysis”, UCRL-ABS-225824

4. G. Wolberg, Digital Image Warping, IEEE Computer Press, 1990

